Abstract

In this article, we address the problem of safety verification of nonlinear hybrid systems. A hybrid symbolic-numeric method is presented to compute exact inequality invariants of hybrid systems efficiently. Some numerical invariants of a hybrid system can be obtained by solving a bilinear SOS programming via the PENBMI solver or iterative method, then the modified Newton refinement and rational vector recovery techniques are applied to obtain exact polynomial invariants with rational coefficients, which exactly satisfy the conditions of invariants. Experiments on some benchmarks are given to illustrate the efficiency of our algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call