Abstract

In this paper we consider ambiguous stochastic constraints under partial information consisting of means and dispersion measures of the underlying random parameters. Whereas the past literature used the variance as the dispersion measure, here we use the mean absolute deviation from the mean (MAD). This makes it possible to use the old result of Ben-Tal and Hochman (1972) in which tight upper and lower bounds on the expectation of a convex function of a random variable are given. We use these bounds to derive exact robust counterparts of expected feasibility of convex constraints and to construct new safe tractable approximations of chance constraints. Numerical examples show our method to be applicable to numerous applications of Robust Optimization, e.g., where implementation error or linear decision rules are present. Also, we show that the methodology can be used for optimization the average-case performance of worst-case optimal Robust Optimization solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.