Abstract
We present the new results for the generalised double-logarithmic equation, obtained from the analytical continuation of the seven-loop anomalous dimension of twist-2 operators in the planar mathcal{N} = 4 SYM theory. The double-logarithmic equation is related to the special asymptotic of the scattering amplitudes, when the large logarithms of the energy of scattering particles are appeared and should be summed in all order of perturbative theory. These large logarithms correspond to the poles of the analytically continued anomalous dimension. The generalised double-logarithmic equation includes the subleading logarithms. We have found, that the expansion of the generalised double-logarithmic equation can be ressumed in the form of rational functions with simple denominator. The solution of the generalised double-logarithmic equation provides a lot of information about the poles of the analytically continued anomalous dimension in all orders of perturbative theory. We have found also the generalised double-logarithmic equation for the analytically continued anomalous dimension near the value, which is related with BFKL-equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.