Abstract

We consider the Ising model and the directed walk on two-dimensional layered lattices and show that the two problems are inherently related: The zero-field thermodynamical properties of the Ising model are contained in the spectrum of the transfer matrix of the directed walk. The critical properties of the two models are connected to the scaling behavior of the eigenvalue spectrum of the transfer matrix which is studied exactly through renormalization for different self-similar distributions of the couplings. The models show very rich bulk and surface critical behaviors with nonuniversal critical exponents, coupling-dependent anisotropic scaling, first-order surface transition, and stretched exponential critical correlations. It is shown that all the nonuniversal critical exponents obtained for the aperiodic Ising models satisfy scaling relations and can be expressed as functions of varying surface magnetic exponents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.