Abstract
Abstract In this paper, we present three exact solutions to the Einstein field equations, each illustrating different black hole models. The first solution introduces a black hole with a variable equation of state, $P = k(r)\rho$, which can represent both singular and regular black holes depending on the parameters $M_0$ and $w_0$. The second solution features a black hole with Hagedorn fluid, relevant to the late stages of black hole formation, and reveals similarities to the first solution by also describing both singular and regular black holes in a specific case. Furthermore, we investigate the shadows cast by these black hole solutions to constrain their parameters. Recognizing that real astrophysical black holes are dynamic, we developed a third, dynamical solution that addresses gravitational collapse and suggests the potential formation of naked singularities. This indicates that a black hole can transition from regular to singular and back to regular during its evolution.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.