Abstract

Transport properties for collisions of water with hydrogen atoms are computed by means of exact quantum scattering calculations. For this purpose, a potential energy surface (PES) was computed for the interaction of rigid H2O, frozen at its equilibrium geometry, with a hydrogen atom, using a coupled-cluster method that includes all singles and doubles excitations, as well as perturbative contributions of connected triple excitations. To investigate the importance of the anisotropy of the PES on transport properties, calculations were performed with the full potential and with the spherical average of the PES. We also explored the determination of the spherical average of the PES from radial cuts in six directions parallel and perpendicular to the C2 axis of the molecule. Finally, the computed transport properties were compared with those computed with a Lennard-Jones 12-6 potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call