Abstract

Quantum mechanical calculations on three of the collinear H+H2 reactions involving D-substitutions are presented and compared with each other and with previous calculations on the H+H2 reaction itself. The energy at which the reaction probability becomes appreciable is well predicted by the vibrationally adiabatic model. The reaction probabilities at low energies (``tunneling'') are larger than predicted by tunneling through one-dimensional barriers for motion along the reaction coordinate. The deviations of the exact rates from transition state theory with unit transmission coefficient and with transmission coefficients corrected for tunneling and nonclassical reflection are examined. Transition state theory including tunneling is usually very accurate (correct within 20% for rate constants); but the errors are much larger at temperatures below 300°K. Although the main use of the present results is for testing approximate models of reaction, not for comparison with laboratory experiments, it is interesting to note that the isotope effects are in rough agreement with the (noncollinear) experimental ones. The results are used to examine the general validity of treatments of the dynamics which separate effects due to the different modes of motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.