Abstract

We derive a closed-form expression for the stock price density under the modified SABR model [see section 2.4 in Islah (2009)] with zero correlation, for β = 1 and β < 1, using the known density for the Brownian exponential functional for μ = 0 given in Matsumoto and Yor (2005), and then reversing the order of integration using Fubini's theorem. We then derive a large-time asymptotic expansion for the Brownian exponential functional for μ = 0, and we use this to characterize the large-time behaviour of the stock price distribution for the modified SABR model; the asymptotic stock price "density" is just the transition density p(t, S0, S) for the CEV process, integrated over the large-time asymptotic "density" [Formula: see text] associated with the Brownian exponential functional (re-scaled), as we might expect. We also compute the large-time asymptotic behaviour for the price of a call option, and we show precisely how the implied volatility tends to zero as the maturity tends to infinity, for β = 1 and β < 1. These results are shown to be consistent with the general large-time asymptotic estimate for implied variance given in Tehranchi (2009). The modified SABR model is significantly more tractable than the standard SABR model. Moreover, the integrated variance for the modified model is infinite a.s. as t → ∞, in contrast to the standard SABR model, so in this sense the modified model is also more realistic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call