Abstract

The Ginzburg–Landau (GL) equation is one of the most important nonlinear equation in physics. It is used to model a vast variety of phenomena in physics like nonlinear waves, second order phase transitions, Bose–Einstein condensation, superfluidity, superconductivity, liquid crystals and strings in field theory. In this work, new exact, periodic and explicit solutions of a time fractional GL equation involving conformable fractional derivatives with Kerr law nonlinearity have been found. The Kerr law nonlinearity is due to the non-harmonic motion of electrons under the influence of an applied field. To determine the solution of the model, we have employed a couple of integration algorithms, solitary wave ansatz and \(\exp (-\varphi ({\chi }\))) methods. New periodic and hyperbolic soliton solutions are found as well as the constraint condition for the existence of the solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call