Abstract

It is shown that the existence of a strict local minimum satisfying the constraint qualification of [16] or McCormick's [12] second order sufficient optimality condition implies the existence of a class of exact local penalty functions (that is ones with a finite value of the penalty parameter) for a nonlinear programming problem. A lower bound to the penalty parameter is given by a norm of the optimal Lagrange multipliers which is dual to the norm used in the penalty function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.