Abstract
An exact parallel algorithm of dynamic mode decomposition (DMD) with Hankel matrices for large-scale flow data is proposed. The proposed algorithm enables the DMD and the Hankel DMD for large-scale data obtained by high-fidelity flow simulations, such as large-eddy simulations or direct numerical simulations using more than a billion grid points, on parallel computations without any approximations. The proposed algorithm completes the computations of the DMD by utilizing block matrices of XTX∈Rk×k (where X∈Rn×k is a large data matrix obtained by high-fidelity simulations, the number of snapshot data is n≳109 rsim 10^9$$\\end{document}]]>, and the number of snapshots is k≲O(103)) without any approximations: for example, the singular value decomposition of X is replaced by the eigenvalue decomposition of XTX. Then, the computation of XTX is parallelized by utilizing the domain decomposition often used in flow simulations, which reduces the memory consumption for each parallel process and wall-clock time in the DMD by a factor approximately equal to the number of parallel processes. The parallel computation with communication is performed only for XTX, allowing for high parallel efficiency under massively parallel computations. Furthermore, the proposed exact parallel algorithm is extended to the Hankel DMD without any additional parallel computations, realizing the Hankel DMD of large-scale data collected by over a billion grid points with comparable cost and memory to the DMD without Hankel matrices. Moreover, this study shows that the Hankel DMD, which has been employed to enrich information and augment rank, is advantageous for large-scale high-dimensional data collected by high-fidelity simulations in data reconstruction and predictions of future states (while prior studies have reported such advantages for low-dimensional data). Several numerical experiments using large-scale data, including laminar and turbulent flows around a cylinder and transonic buffeting flow around a full aircraft configuration, demonstrate that (i) the proposed exact parallel algorithm reproduces the existing non-parallelized Hankel DMD, (ii) the Hankel DMD for large-scale data consisting of over a billion grid points is feasible by using the proposed exact parallel algorithm with high parallel efficiency on more than 6 thousand CPU cores, and (iii) the Hankel DMD has advantages for high-dimensional data such as n≳109 rsim 10^9$$\\end{document}]]>.Graphical abstract
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.