Abstract

In a one-sided hypothesis testing problem in clinical trials, the monotonic condition of a tail probability function is fundamentally important to guarantee that the actual type I and II error rates occur at the boundary of their associated parameter spaces. Otherwise, one has to search for the actual rates over the complete parameter space, which could be very computationally intensive. This important property has been extensively studied in traditional one-stage study settings (e.g., non-inferiority or superiority between two binomial proportions), but there is very limited research for this property in a two-stage design setting, e.g., Simon's two-stage design. In this note, we theoretically prove that the tail probability is an increasing function of the parameter in Simon's two-stage design. This proof not only provides theoretical justification that p-value occurs at the boundary of the parameter space, but also helps to reduce the computational intensity for study design search.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.