Abstract
At a time when galaxy surveys and other observations are reaching unprecedented sky coverage and precision it seems timely to investigate the effects of general relativistic nonlinear dynamics on the growth of structures and on observations. Analytic inhomogeneous cosmological models are an indispensable way of investigating and understanding these effects in a simplified context. In this paper, we develop exact inhomogeneous solutions of general relativity with pressureless matter (dust, describing cold dark matter) and cosmological constant $\Lambda$, which can be used to model an arbitrary initial matter distribution along one line of sight. In particular, we consider the second class Szekeres models with $\Lambda$ and split their dynamics into a flat $\Lambda$CDM background and exact nonlinear inhomogeneities, obtaining several new results. One single metric function $Z$ describes the deviation from the background. We show that $F$, the time dependent part of $Z$, satisfies the familiar linear differential equation for $\delta$, the first-order density perturbation of dust, with the usual growing and decaying modes. In the limit of small perturbations, $\delta \approx F$ as expected, and the growth of inhomogeneities links up exactly with standard perturbation theory. We provide analytic expressions for the exact nonlinear $\delta$ and the growth factor in our models. For the case of over-densities, we find that, depending on the initial conditions, the growing mode may or may not lead to a pancake singularity, analogous to a Zel'dovich pancake. This is in contrast with the $\Lambda=0$ pure Einstein-de-Sitter background where, at any given point in comoving (Lagrangian) coordinates pancakes will always occur.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.