Abstract

We present a simple geometrical "fluidic" approximation to the non-adiabatic part of the Kohn-Sham potential, $v_{\mathrm{KS}}$, of time-dependent density functional theory. This part of $v_{\mathrm{KS}}$ is often crucial, but most practical functional approximations utilize an adiabatic approach based on ground-state DFT. For a variety of prototype systems, we calculate the exact time-dependent electron density, and find that the fluidic approximation corrects a large part of the error arising from the "exact adiabatic" approach, even when the system is evolving far from adiabatically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.