Abstract

The theory of open quantum systems has many applications ranging from simulating quantum dynamics in condensed phases to better understanding quantum-enabled technologies. At the center of theoretical chemistry are the developments of methodologies and computational tools for simulating charge and excitation energy transfer in solutions, biomolecules, and molecular aggregates. As a variety of these processes display non-Markovian behavior, classical computer simulation can be challenging due to exponential scaling with existing methods. With quantum computers holding the promise of efficient quantum simulations, in this paper, we present a new quantum algorithm based on Kraus operators that capture the exact non-Markovian effect at a finite temperature. The implementation of the Kraus operators on the quantum machine uses a combination of singular value decomposition (SVD) and optimal Walsh operators that result in shallow circuits. We demonstrate the feasibility of the algorithm by simulating the spin-boson dynamics and the exciton transfer in the Fenna-Matthews-Olson (FMO) complex. The NISQ results show very good agreement with the exact ones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call