Abstract
Background/Objectives: Lung cancer is a devastating disease with the highest mortality rate among cancer types. Over 60% of non-small cell lung cancer (NSCLC) patients, accounting for 87% of lung cancer diagnoses, require radiation therapy. Rapid treatment initiation significantly increases the patient’s survival rate and reduces the mortality rate. Accurate tumor segmentation is a critical step in diagnosing and treating NSCLC. Manual segmentation is time- and labor-consuming and causes delays in treatment initiation. Although many lung nodule detection methods, including deep learning-based models, have been proposed. Most of these methods still have a long-standing problem of high false positives (FPs). Methods: Here, we developed an electronic health record (EHR)-guided lung tumor auto-segmentation called EXACT-Net (EHR-enhanced eXACtitude in Tumor segmentation), where the extracted information from EHRs using a pre-trained large language model (LLM) was used to remove the FPs and keep the TP nodules only. Results: The auto-segmentation model was trained on NSCLC patients’ computed tomography (CT), and the pre-trained LLM was used with the zero-shot learning approach. Our approach resulted in a 250% boost in successful nodule detection using the data from ten NSCLC patients treated in our institution. Conclusions: We demonstrated that combining vision-language information in EXACT-Net multi-modal AI framework greatly enhances the performance of vision only models, paving the road to multimodal AI framework for medical image processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.