Abstract
We derive a product rule satisfied by restricted Schur polynomials. We focus mostly on the case that the restricted Schur polynomial is built using two matrices, although our analysis easily extends to more than two matrices. This product rule allows us to compute exact multi-point correlation functions of restricted Schur polynomials, in the free field theory limit. As an example of the use of our formulas, we compute two point functions of certain single trace operators built using two matrices and three point functions of certain restricted Schur polynomials, exactly, in the free field theory limit. Our results suggest that gravitons become strongly coupled at sufficiently high energy, while the restricted Schur polynomials for totally antisymmetric representations remain weakly interacting at these energies. This is in perfect accord with the half-BPS (single matrix) results of hep-th/0512312. Finally, by studying the interaction of two restricted Schur polynomials we suggest a physical interpretation for the labels of the restricted Schur polynomial: the composite operator $\chi_{R,(r_n,r_m)}(Z,X)$ is constructed from the half BPS ``partons'' $\chi_{r_n}(Z)$ and $\chi_{r_m}(X)$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.