Abstract

AbstractExact expressions for the frequency equations and mode shapes of an idealised whole aircraft are derived using the symbolic computation package REDUCE. The aircraft is idealised as a bending-torsion coupled beam for the wing with the associated mass and inertia of the fuselage, tail-plane, fin and rudder assembly being concentrated at the root. The governing differential equation of motion of the aircraft is then solved in its most general form. The analysis is split into symmetric and anti-symmetric cases to formulate the equations from which the natural frequencies and the corresponding mode shapes of the unrestrained aircraft are derived. The analytical approach used here is of great significance, particularly from an aeroelastic optimization point of view, for which repetitive calculations of natural frequencies and mode shapes are often required. The application of the theory is demonstrated by numerical results. These results have been compared with those obtained from the dynamic stiffness and finite element methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.