Abstract

We present the first exact and robust implementation of the 3D Minkowski sum of two non-convex polyhedra. Our implementation decomposes the two polyhedra into convex pieces, performs pairwise Minkowski sums on the convex pieces, and constructs their union. We achieve exactness and the handling of all degeneracies by building upon 3D Nef polyhedra as provided by Cgal. The implementation also supports open and closed polyhedra. This allows the handling of degenerate scenarios like the tight passage problem in robot motion planning.The bottleneck of our approach is the union step. We address efficiency by optimizing this step by two means: we implement an efficient decomposition that yields a small amount of convex pieces, and develop, test and optimize multiple strategies for uniting the partial sums by consecutive binary union operations.The decomposition that we implemented as part of the Minkowski sum is interesting in its own right. It is the first robust implementation of a decomposition of polyhedra into convex pieces that yields at most O(r 2) pieces, where r is the number of edges whose adjacent facets comprise an angle of more than 180 degrees with respect to the interior of the polyhedron.KeywordsPriority QueueConvex PolyhedronVertical EdgeRobot Motion PlanningCyclic DependencyThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.