Abstract

The scheduling of quay cranes (QCs) to minimize the handling time of a berthed vessel is one of the most important operations in container terminals as it impacts the terminal’s overall productivity. In this paper, we propose two exact methods to solve the quay crane scheduling problem (QCSP) where a task is defined as handling a single container and subject to different technical constraints including QCs’ safety margin, non-crossing, initial position, and nonzero traveling time. The first method is based on two versions of a compact mixed-integer programming formulation that can solve large problem instances using a general purpose solver. The second is a combination of some constraints of the proposed mathematical model and the binary search algorithm to reduce the CPU time, and solve more efficiently large-sized problems. Unlike existing studies, the computational study demonstrates that both methods can reach optimal solutions for large-sized instances and validates their dominance compared to an exact model proposed in the literature which finds solutions only for small problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.