Abstract

We present an exact solution for the distribution P(h(m),L) of the maximal height h(m) (measured with respect to the average spatial height) in the steady state of a fluctuating Edwards-Wilkinson interface in a one dimensional system of size L with both periodic and free boundary conditions. For the periodic case, we show that P(h(m),L)=L(-1/2)f(h(m)L(-1/2)) for all L>0, where the function f(x) is the Airy distribution function that describes the probability density of the area under a Brownian excursion over a unit interval. For the free boundary case, the same scaling holds, but the scaling function is different from that of the periodic case. Numerical simulations are in excellent agreement with our analytical results. Our results provide an exactly solvable case for the distribution of extremum of a set of strongly correlated random variables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.