Abstract
Recently, low-dimensional models of neuronal activity have been exactly derived for large networks of deterministic, quadratic integrate-and-fire (QIF) neurons. Such firing rate models (FRM) describe the emergence of fast collective oscillations (>30Hz) via the frequency locking of a subset of neurons to the global oscillation frequency. However, the suitability of such models to describe realistic neuronal states is seriously challenged by the fact that during episodes of fast collective oscillations, neuronal discharges are often very irregular and have low firing rates compared to the global oscillation frequency. Here we extend the theory to derive exact FRM for QIF neurons to include noise and show that networks of stochastic neurons displaying irregular discharges at low firing rates during episodes of fast oscillations are governed by exactly the same evolution equationsas deterministic networks. Our results reconcile two traditionally confronted views on neuronal synchronization and upgrade the applicability of exact FRM to describe a broad range of biologically realistic neuronal states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.