Abstract
An exact form of the local Whittle likelihood is studied with the intent of developing a general-purpose estimation procedure for the memory parameter (d) that does not rely on tapering or differencing prefilters. The resulting exact local Whittle estimator is shown to be consistent and to have the same $N(0,\frac{1}{4})$ limit distribution for all values of d if the optimization covers an interval of width less than $\frac{9}{2}$ and the initial value of the process is known.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.