Abstract
We calculate the instanton corrections to energy spectra of one-dimensional quantum mechanical oscillators to all orders and unify them in a closed form transseries description. Using alien calculus, we clarify the resurgent structure of these transseries and demonstrate two approaches in which the Stokes constants can be derived. As a result, we formulate a minimal one-parameter transseries for the natural nonperturbative extension to the perturbative energy, which captures the Stokes phenomenon in a single stroke. We derive these results in three models: quantum oscillators with cubic, symmetric double well and cosine potentials. In the latter two examples, we find that the resulting full transseries for the energy has a more convoluted structure that we can factorise in terms of a minimal and a median transseries. For the cosine potential we briefly discuss this more complicated transseries structure in conjunction with topology and the concept of the resurgence triangle.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.