Abstract

Monte Carlo methods for the exact inference have received much attention recently in complete or incomplete contingency table analysis. However, conventional Markov chain Monte Carlo, such as the Metropolis–Hastings algorithm, and importance sampling methods sometimes generate the poor performance by failing to produce valid tables. In this paper, we apply an adaptive Monte Carlo algorithm, the stochastic approximation Monte Carlo algorithm (SAMC; Liang, Liu, & Carroll, 2007), to the exact test of the goodness-of-fit of the model in complete or incomplete contingency tables containing some structural zero cells. The numerical results are in favor of our method in terms of quality of estimates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.