Abstract
We consider a lattice model of active matter with exclusion and derive its hydrodynamic description exactly. The hydrodynamic limit leads to an integro-differential equation for the density of particles with a given orientation. Volume exclusion results in nonlinear mobility dependent on spatial density. Such models of active matter can support motility-induced phase separation, which occurs despite the absence of attractive interactions. We study the onset of phase separation with linear stability analysis and numerical simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.