Abstract

By removing one empty site between two occupied sites, we map the ground states of chains of hardcore bosons and spinless fermions with infinite nearest-neighbor repulsion to ground states of chains of hardcore bosons and spinless fermions without nearest-neighbor repulsion, respectively, and ultimately in terms of the one-dimensional Fermi sea. We then introduce the intervening-particle expansion, where we write correlation functions in such ground states as a systematic sum over conditional expectations, each of which can be ultimately mapped to a one-dimensional Fermi-sea expectation. Various ground-state correlation functions are calculated for the bosonic and fermionic chains with infinite nearest-neighbor repulsion, as well as for a ladder model of spinless fermions with infinite nearest-neighbor repulsion and correlated hopping in three limiting cases. We find that the decays of these correlation functions are governed by surprising power-law exponents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.