Abstract

We have investigated the functional derivative of the nonadditive kinetic-energy bifunctional, which appears in the embedding potential that is used in the frozen-density embedding formalism, in the limit that the separation of the subsystems is large. We have derived an exact expression for this kinetic-energy component of the embedding potential and have applied this expression to deduce its exact form in this limit. Comparing to the approximations currently in use, we find that while these approximations are correct at the nonfrozen subsystem, they fail completely at the frozen subsystem. Using test calculations on two model systems, a H2O...Li+ complex and a cluster of aminocoumarin C151 surrounded by 30 water molecules, we show that this failure leads to a wrong description of unoccupied orbitals, which can lead to convergence problems caused by too low-lying unoccupied orbitals and which can further have serious consequences for the calculation of response properties. Based on our results, a simple correction is proposed, and we show that this correction is able to fix the observed problems for the model systems studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.