Abstract
We express the partition functions of the dimer model on finite square lattices under five different boundary conditions (free, cylindrical, toroidal, Möbius strip, and Klein bottle) obtained by others (Kasteleyn, Temperley and Fisher, McCoy and Wu, Brankov and Priezzhev, and Lu and Wu) in terms of the partition functions with twisted boundary conditions Z(alpha, beta) with (alpha, beta)=(1/2,0), (0,1/2) and (1/2,1/2). Based on such expressions, we then extend the algorithm of Ivashkevich, Izmailian, and Hu [J. Phys. A 35, 5543 (2002)] to derive the exact asymptotic expansion of the logarithm of the partition function for all boundary conditions mentioned above. We find that the aspect-ratio dependence of finite-size corrections is sensitive to boundary conditions and the parity of the number of lattice sites along the lattice axis. We have also established several groups of identities relating dimer partition functions for the different boundary conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.