Abstract

Finite-size scaling, finite-size corrections, and boundary effects for critical systems have attracted much attention in recent years. Here we derive exact finite-size corrections for the free energy F and the specific heat C of the critical ferromagnetic Ising model on the Mu x 2 Nu square lattice with Brascamp-Kunz (BK) boundary conditions [J. Math. Phys. 15, 66 (1974)] and compare such results with those under toroidal boundary conditions. When the ratio xi/2=(Mu+1)/2 Nu is smaller than 1 the behaviors of finite-size corrections for C are quite different for BK and toroidal boundary conditions; when ln(xi/2) is larger than 3, finite-size corrections for C in two boundary conditions approach the same values. In the limit Nu-->infinity we obtain the expansion of the free energy for infinitely long strip with BK boundary conditions. Our results are consistent with the conformal field theory prediction for the mixed boundary conditions by Cardy [Nucl. Phys. B 275, 200 (1986)] although the definitions of boundary conditions in two cases are different in one side of the long strip.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.