Abstract

The Chern-Simons-Kodama (CSK) state is an exact, non-perturbative wave function in the Ashtekar formulation of classical General Relativity. In this work, we find a generalized fermionic CSK state by solving the extended gravitational and fermionic Hamiltonian constraints of the Wheeler-DeWitt equation exactly. We show that this new state reduces to the original Kodama state upon symmetry reduction to FRW coordinates with perturbative fermionic corrections, making contact with the Hartle-Hawking and Vilenkin wave functions of the universe in cosmology. We also find that when both torsion and fermions are non-vanishing, the wave function possesses a finite amplitude to evade the Big Bang curvature singularity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call