Abstract
We derive a closed-form combinatorial expression for the number of states in canonical systems with discrete energy levels. The expression results from the exact low-temperature power series expansion of the partition function. The approach provides interesting insights into basis of statistical mechanics. In particular, it is shown that in some cases the logarithm of the partition function may be considered the generating function for the number of internal states of energy clusters, which characterize system's microscopic configurations. Apart from elementary examples including the Poisson, geometric and negative binomial probability distributions for the energy, the framework is also validated against the one-dimensional Ising model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.