Abstract

Abstract Vehicle offtracking behavior at low speeds is closely approximated by a geometric entity called a tractrix. This paper presents differential equations for generalized coordinates of a planar multibody vehicle model based on tractrix behavior. The equations are exact, can be used with any type of input path, are valid for forward and backward movements, and are much simpler than previously published formulations used to compute transient offtracking. The differential equations can be integrated using conventional numerical integration algorithms to obtain plots of the low-speed tracking performance of articulated vehicles. The equations were formulated symbolically by a computer program used to analyze the kinematic and dynamic behavior of multibody systems. Example numerical results are plotted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.