Abstract
We prove an uncertainty relation for energy and arrival time, where the arrival of a particle at a detector is modeled by an absorbing term added to the Hamiltonian. In this well-known scheme the probability for the particle’s arrival at the counter is identified with the loss of normalization for an initial wave packet. Under the sole assumption that the absorbing term vanishes on the initial wavefunction, we show that and , where 〈T〉 denotes the mean arrival time and p is the probability for the particle to be eventually absorbed. Nearly minimal uncertainty can be achieved in a two-level system, and we propose a trapped ion experiment to realize this situation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.