Abstract
Using the energy method we investigate the stability of pure conduction in Pearson’s model for Bénard–Marangoni convection in a layer of fluid at infinite Prandtl number. Upon extending the space of admissible perturbations to the conductive state, we find an exact solution to the energy stability variational problem for a range of thermal boundary conditions describing perfectly conducting, imperfectly conducting, and insulating boundaries. Our analysis extends and improves previous results, and shows that with the energy method global stability can be proven up to the linear instability threshold only when the top and bottom boundaries of the fluid layer are insulating. Contrary to the well-known Rayleigh–Bénard convection set-up, therefore, energy stability theory does not exclude the possibility of subcritical instabilities against finite-amplitude perturbations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.