Abstract

The Hamiltonian of the three-body problem with two and three-body interactions of Calogero–Sutherland type written in an appropriate set of variables is shown to be a differential operator of Laplace–Beltrami $$H_{LB}$$ type. Its eigenfunction is expressed then in terms of Jack Polynomials. In the case of identical distinguishable fermions, the only possible partition and its corresponding occupation state in Fock space is exhibited. In the co-moving frame with the center of mass, the exact explicit excitation energy due to interactions is given in terms of the parameters of the problem. The excitation energy due to interactions is expressed in such a way that it is possible to distinguish the excitation energy due to the pairwise interactions neglecting the three-body interaction as well as the excitation energy due to the pure three-body interactions neglecting the pairwise interactions. Different possible levels of excitation energy due to different type of interactions are explicitly written.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.