Abstract

Total potential energy of non-symmetric thin-walled beam-columns in the general form is presented by introducing the displacement field based on semitangential rotations and deriving transformation equations between displacement and force parameters defined at the arbitrary axis and the centroid-shear center axis, respectively. Next, governing equations and force–deformation relations are derived from the total potential energy for a shear-deformable, uniform beam element and a system of linear eigenproblem with non-symmetric matrices is constructed based on 14 displacement parameters. And then explicit expressions for displacement parameters are derived and exact dynamic stiffness matrices are determined using force–deformatin relationships. In addition, the modified numerical method to eliminate multiple zero eigenvalues and to evaluate the exact static stiffness matrix is developed for spatial stability analysis. Finally, in order to demonstrate the validity and the accuracy of this study, the spatially coupled natural frequencies and buckling loads are evaluated and compared with analytical solutions or results analyzed by thin-walled beam elements and ABAQUS's shell elements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.