Abstract
Stochasticity in gene expression can result in fluctuations in gene product levels. Recent experiments indicated that feedback regulation plays an important role in controlling the noise in gene expression. A quantitative understanding of the feedback effect on gene expression requires analysis of the corresponding stochastic model. However, for stochastic models of gene expression with general regulation functions, exact analytical results for gene product distributions have not been given so far. Here, we propose a technique to solve a generalized ON-OFF model of stochastic gene expression with arbitrary (positive or negative, linear or nonlinear) feedbacks including posttranscriptional or posttranslational regulation. The obtained results, which generalize results obtained previously, provide new insights into the role of feedback in regulating gene expression. The proposed analytical framework can easily be extended to analysis of more complex models of stochastic gene expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.