Abstract

We derive the exact statistical distribution of maximum a posteriori (MAP) estimators having edge-preserving nonGaussian priors. Such estimators have been widely advocated for image restoration and reconstruction problems. Previous investigations of these image recovery methods have been primarily empirical; the distribution we derive enables theoretical analysis. The signal model is linear with Gaussian measurement noise. We assume that the energy function of the prior distribution is chosen to ensure a unimodal posterior distribution (for which convexity of the energy function is sufficient), and that the energy function satisfies a uniform Lipschitz regularity condition. The regularity conditions are sufficiently general to encompass popular priors such as the generalized Gaussian Markov random field prior and the Huber prior, even though those priors are not everywhere twice continuously differentiable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.