Abstract
Given a graph G, the exact distance-p graph $$G^{[\natural p]}$$ has V(G) as its vertex set, and two vertices are adjacent whenever the distance between them in G equals p. We present formulas describing the structure of exact distance-p graphs of the Cartesian, the strong, and the lexicographic product. We prove such formulas for the exact distance-2 graphs of direct products of graphs. We also consider infinite grids and some other product structures. We characterize the products of graphs of which exact distance graphs are connected. The exact distance-p graphs of hypercubes $$Q_n$$ are also studied. As these graphs contain generalized Johnson graphs as induced subgraphs, we use some known constructions of their colorings. These constructions are applied for colorings of the exact distance-p graphs of hypercubes with the focus on the chromatic number of $$Q_{n}^{[\natural p]}$$ for $$p\in \{n-2,n-3,n-4\}$$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.