Abstract

Symmetry-breaking perturbations destabilize the critical points of the two-channel and two-impurity Kondo models, thereby leading to a crossover from non-Fermi liquid behavior to standard Fermi liquid physics. Here we use an analogy between this crossover and one occurring in the boundary Ising model to calculate the full crossover Green function analytically. In remarkable agreement with our numerical renormalization group calculations, the single exact function applies for an arbitrary mixture of the relevant perturbations in each model. This rich behavior resulting from finite channel asymmetry, interlead charge transfer, and/or magnetic field should be observable in quantum dot or tunneling experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call