Abstract

We give a simple polynomial-time algorithm to exactly count the number of Euler tours (ETs) of any Eulerian generalized series-parallel graph, and show how to adapt this algorithm to exactly sample a random ET of the given generalized series-parallel graph. Note that the class of generalized series-parallel graphs includes all outerplanar graphs. We can perform the counting in time O ( m Δ 3 ) , where Δ is the maximum degree of the graph with m edges. We use O ( m n Δ 2 log Δ ) bits to store intermediate values during our computations. To date, these are the first known polynomial-time algorithms to count or sample ETs of any class of graphs; there are no other known polynomial-time algorithms to even approximately count or sample ETs of any other class of graphs. The problem of counting ETs is known to be ♯ P-complete for general graphs (Brightwell and Winkler, 2005 [2]) also for planar graphs (Creed, 2010 [3]).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.