Abstract

We present a reciprocal space technique for the calculation of the Coulomb integral in two dimensions in systems with reduced periodicity, i.e., finite systems, or systems that are periodic only in one dimension. The technique consists of cutting off the long-range part of the interaction by modifying the expression for the Coulomb operator in reciprocal space. The physical result amounts in an effective screening of the spurious interactions originated by the presence of ghost periodic replicas of the system. This work extends a previous report [C. A. Rozzi et al., Phys. Rev. B 73, 205119 (2006)], where three-dimensional systems were considered. We show that the use of the cutoffs dramatically enhances the accuracy of the calculations, and it allows description of two-dimensional systems of reduced periodicity with substantially less computational effort. In particular, we consider quantum-dot arrays having potential applications in quantum information technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.