Abstract

ABSTRACTIn addition to point estimate for the probability of response in a two-stage design (e.g. Simon's two-stage design for binary endpoints), confidence limits should be computed and reported. The current method of inverting the p-value function to compute the confidence interval does not guarantee coverage probability in a two-stage setting. The existing exact approach to calculate one-sided limits is based on the overall number of responses to order the sample space. This approach could be conservative because many sample points have the same limits. We propose a new exact one-sided interval based on p-value for the sample space ordering. Exact intervals are computed by using binomial distributions directly, instead of a normal approximation. Both exact intervals preserve the nominal confidence level. The proposed exact interval based on the p-value generally performs better than the other exact interval with regard to expected length and simple average length of confidence intervals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.