Abstract
Estimation of prevalence of disease, including construction of confidence intervals, is essential in surveys for screening as well as in monitoring disease status. In most analyses of survey data it is implicitly assumed that the diagnostic test has a sensitivity and specificity of 100%. However, this assumption is invalid in most cases. Furthermore, asymptotic methods using the normal distribution as an approximation of the true sampling distribution may not preserve the desired nominal confidence level. Here we proposed exact two-sided confidence intervals for the prevalence of disease, taking into account sensitivity and specificity of the diagnostic test. We illustrated the advantage of the methods with results of an extensive simulation study and real-life examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.