Abstract

We found exact solutions for canonical classical and quantum dynamics for general relativity in Horwitz general covariance theory. These solutions can be obtained by solving the generalized geodesic equation and Schrödinger-Stueckelberg-Horwitz-Piron (SHP) wave equation for a simple harmonic oscillator in the background of a two dimensional dilaton black hole spacetime metric. We proved the existence of an orthonormal basis of eigenfunctions for generalized wave equation. This basis functions form an orthogonal and normalized (orthonormal) basis for an appropriate Hilbert space. The energy spectrum has a mixed spectrum with one conserved momentum p according to a quantum number n. To find the ground state energy we used a variational method with appropriate boundary conditions. A set of mode decomposed wave functions and calculated for the Stueckelberg-Schrodinger equation on a general five dimensional blackhole spacetime in Hamilton gauge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.