Abstract

Bose–Einstein condensates of repulsive Bose atoms in a one-dimensional harmonic trap are investigated within the framework of a mean field theory. We solve the one-dimensional nonlinear Gross–Pitaevskii (GP) equation that describes atomic Bose–Einstein condensates. As a result, we acquire a family of exact breather solutions of the GP equation. We numerically calculate the number density [Formula: see text] of atoms that is associated with these solutions. The first discovery of the calculation is that at the instant of the saddle point, the density profile exhibits a sharp peak with extremely narrow width. The second discovery of the calculation is that in the center of the trap ([Formula: see text] m), the number density is a U-shaped function of the time [Formula: see text]. The third discovery of the calculation is that the surface plot of the density [Formula: see text] likes a saddle surface. The fourth discovery of the calculation is that as the number [Formula: see text] of atoms increases, the Bose–Einstein condensate in a one-dimensional harmonic trap becomes stabler and stabler.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.