Abstract

The standard way of applying particle filtering to stochastic hybrid systems is to make use of hybrid particles, where each particle consists of two components, one assuming Euclidean values, and the other assuming discrete mode values. This paper develops a novel particle filter (PF) for a discrete-time stochastic hybrid system. The novelty lies in the use of the exact Bayesian equations for the conditional mode probabilities given the observations. Therefore particles are needed for the Euclidean valued state component only. The novel particle filter is referred to as the interacting multiple model (IMM) particle filter (IMMPF) because it incorporates a filter step which is of the same form as the interaction step of the IMM algorithm. Through Monte Carlo simulations, it is shown that the IMMPF has significant advantage over the standard PF, in particular for situations where conditional switching rate or conditional mode probabilities have small values

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.