Abstract

Given a set of agents on a grid, the multi-agent path finding problem aims to find a path that moves each agent from its given start location to its target location such that they do not collide and that the sum of arrival times is minimized. LNS2 is a state-of-the-art algorithm for anytime, suboptimal solving. It is an upper-bounding algorithm that repeatedly adjusts an existing solution and, being a local search, is oblivious to optimality. BCP is a state-of-the-art algorithm for exact solving. It is a lower-bounding tree search that attempts to tighten the lower bound until a solution appears. As BCP operates on the lower bound, the first solution it finds is optimal or nearly optimal, and therefore has poor anytime behavior. This paper proposes to tightly couple LNS2 and BCP to achieve better anytime, suboptimal solving while retaining the optimality guarantee of BCP. Experiments indicate that the combination achieves better anytime behavior than BCP in general and better suboptimal performance than LNS2 on congested maps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.