Abstract

The evolution of the spectrum of isotropic uniform radiation in an infinite space filled with a homogeneous, nonrelativistic electron gas is calculated by solving the Kompaneets equation. For an infinitely narrow initial spectrum, the time dependence of the average frequency and frequency dispersion is determined in a linear approximation of the equation. Characteristic times corresponding to changes in the character of this dependence are introduced. Two schemes are proposed for the numerical solution of the nonlinear equation: a nonconservative scheme with a grid that is uniform in frequency and a conservative scheme with automatic selection of an adaptive grid in frequency and time. For the linear equation the method yields results consistent with calculations of its solutions in terms of an eigenfunction expansion of the Kompaneets operator calculated in [D. I. Nagirner and V. M. Loskutov, Astrofizika, 40, 97 (1977)]. The influence of nonlinearity on the evolution of the spectrum of initially monochromatic radiation of various intensities is traced as an example of the application of the method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.